Name \qquad Class \qquad Date \qquad
1 Does the table define the second variable as a function of the first variable?

x	y
0	6
1	10
3	18
5	26
7	34

a. It is not a function
b. $y=4 x-24$
c. $y=4 x+6$

2 The graph shows the graph of C as a function of t. C stands for the number of students (in thousands) at State University who consider themselves computer literate, and t represents time, measured in years since 1990. When did 4300 students consider themselves computer literate?

a. 1989
b. 1991
c. 1992

3 Use the graph to find $R(0)$.

a. $R(0)=-1$
b. $R(0)=2$
c. $R(0)=-2$
d. $R(0)=0$

4 Use the graph to find $F(2)$.

a. $F(2)=-2$
b. $F(2)=-1$
c. $F(2)=3$
d. $F(2)=0$
e. $F(2)=2$

5 Sketch the graph of the quadratic function.

$$
h(t)=t^{2}-5
$$

a.

b.

6 The following graph is a variation of one of the basic graphs listed below. Identify its basic graph.

a. $f(x)=\frac{1}{x}$
b. $f(x)=x^{2}$
c. $f(x)=\sqrt{x}$
d. $f(x)=x^{3}$
e. $f(x)=|x|$

7 Find the domain and range of the following function from its graph.

a. Domain: [-3, 3]
b. Range: [-3, 3]
c. Range: $[-8,10]$
d. Domain: $[-8,10]$

8 Find the domain and range of the following function from its graph.

a. Range: [-2, 2]
b. Range: [-3, 3]
c. Domain: [-3, 3]
d. Domain: [-2, 2]

9 The amount of current, I, that flows through a circuit varies inversely with the resistance, R, on the circuit. An iron with a resistance of 9 ohms draws 5.75 amps of current. What is the resistance of a toaster that draws 11.5 amps of current?
a. 5.1 ohms
b. 4.8 ohms
c. 4.5 ohms
d. 5.5 ohms

10 In the following problem, one quantity varies directly with the square root of the other, that is, $y=k \sqrt{x}$.
The table gives the distance, d, in miles that you can see from various heights, h, given in feet. How far can you see from an airplane flying at 22500 feet?

\boldsymbol{h}	100	441	961	1681
\boldsymbol{d}	11.83	24.843	36.673	48.503

a. $d=186.85$ miles
b. $d=171.15$ miles
c. $d=177.45$ miles
d. $d=168.85$ miles

11 A colony of bacteria starts with 470 organisms and doubles every week. How many bacteria will there be after 6 weeks?
a. $P=16000$ bacteria
b. $P=30080$ bacteria
c. $P=28800$ bacteria
d. $P=30720$ bacteria

12 A sum of $\$ 2200$ is invested in an account that pays 6% interest compounded annually. How much is in the account after 6 years?
a. $A=\$ 3716.85$
b. $A=\$ 2944.10$
c. $A=\$ 3120.74$
d. $A=\$ 3939.86$

13 Before the advent of antibiotics an outbreak of cholera might spread through a city so that the number of cases doubled every 3 days. Twenty-eight cases were discovered on July 5. Write a function for the number of cases of cholera t days later.
a. $f(t)=3 \cdot(2)^{\frac{t}{28}}$
b. $f(t)=28 \cdot(3)^{t}$
$f(t)=28$
d. $f(t)=28 \cdot(2)^{\frac{t}{3}}$

14 Choose the value(s) of x where $f(x)=g(x)$.

$$
f(x)=3^{x-1}, g(x)=3^{x}-2
$$

a. -2
b. 0
C. 4
d. 1
e. 2
f. -4

15 Solve the equation, writing your answer as a logarithm.

$$
3^{x}=2
$$

a. $\log _{2} \frac{1}{3}$
b. $\log _{3}(-2)$
c. $\log _{3} 2$
d. $\log _{2} 3$

16 Convert the logarithmic equation to exponential form.

$$
\log _{14} 196=w
$$

a. $14^{w}=\frac{1}{196}$
b. $\left(\frac{1}{14}\right)^{w}=196$
c. $14^{w}=196$
d. $196{ }^{w}=14$

17 Simplify the expression.

$$
\log _{2}\left(\log _{3} 9\right)
$$

a. $\log _{6} 9$
b. $\log _{3} 18$
c. $\log _{2} 27$
d. 1

18 Factor completely.

$$
8 x^{3} y^{6}+27
$$

Select a correct answer.
a. $\left(4 x y^{2}+12\right)\left(9 x^{3} y^{6}-4 x y^{2}+4\right)$
b. $4 x^{3}+6 x^{2}+9 x+7$
c. $\left(2 x y^{6}+6\right)\left(4 x^{3} y^{12}-4 x y^{4}+9\right)$
d. $\left(2 x y^{2}+3\right)\left(4 x^{2} y^{4}-6 x y^{2}+9\right)$

19 Use a calculator to graph the cubic polynomial.

$$
y=(x-1)^{3}
$$

a.

c.

b.

d.

20 Sketch a rough graph of the polynomial function by hand.

$$
q(x)=(x-4)^{2}(x+1)^{2}(x+3)^{2}
$$

a.

c.

b.

21 Find the equation in factored form of the polynomial graphed below.

a. $y=(x+4)(x+3)(x+3)$
c. $y=(x-$
4) ($x-$
3) $(x+3)$
b. $y=(x+4)(x+1)(x+2)$
d. $y=(x-$
4) ($x-$

1) $(x-$
2)

22 Select the correct horizontal and vertical asymptotes for the following function

$$
y=\frac{3\left(x^{2}-1\right)}{x^{2}+3}
$$

a.

c.

b.

d.

23 Select the correct horizontal and vertical asymptotes for the following function
$y=\frac{x^{2}+5}{x^{2}+1}$
a.

c.

..to be continued
continuation
b.

d.

24 Give an equation for the function graphed.

a. $y=\sqrt{x}-4$
b. $y=-\sqrt{x}+4$
c. $y=-\sqrt{x}-4$
d. $y=\sqrt{x}+4$

25 Evaluate the function at the given algebraic expression.

$$
\begin{gathered}
G(s)=4 s^{2}-8 s \\
G(5 a)
\end{gathered}
$$

a. $100 a^{2}-40 a$
b. $40 a^{2}-100 a$
c. $100 a-40$
d. $120-160 a$

26 For this function compute the following expression.

$$
\begin{gathered}
f(x)=x^{2}+1 \\
f(5+4)
\end{gathered}
$$

a. 82
b. 78
c. 53
d. 57

27 Graph by hand the following piecewise-defined function.

$$
H(t)=\left\{\begin{aligned}
t^{2} & \text { if } t<1 \\
\frac{1}{2} t+\frac{1}{2} & \text { if } t \geq 1
\end{aligned}\right.
$$

a.

c.

b.

d.

28 If $F(t)=\frac{2}{5} t+1$ find $F^{-1}(6)$
a. $\frac{25}{2}$
b. $\frac{1}{10}$
c. $\frac{1}{5}$
d. $\frac{7}{30}$

29 If $f(x)=\frac{x+2}{x-3}$, find $f^{-1}(5)$
a. $\frac{17}{4}$
b. $\frac{1}{4}$
c. $\frac{1}{3}$
d. $\frac{7}{10}$

30 Given $f(x)=x^{3}+x+2$,
find $f^{-1}(2)$.
a. -2
b. 1
c. -3
d. 0

Rev of FCh 5-8

1. c
2. b
3. c
4. e
5. b
6. a
7. a, c
8. b, d
9. c
10. c
11. b
12. c
13. d
14. a
15. b
16. C
17. c
18. d
19. a
20. d
21. a
22. a
23. c
24. c
25. a
26. a
27. a
28. a
29. d
